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a b s t r a c t

A method of constructing singular solutions for conical bodies is proposed and versions of its numerical
realization based on the finite-elements methods are considered. The results of numerical experiments
illustrating the effectiveness and reliability of the proposed method are presented, as well as the results
of a calculation of the eigenvalues, which define the form of the stress singularity for homogeneous and
composite circular and non-circular cones for different boundary conditions.

© 2008 Elsevier Ltd. All rights reserved.

It was shown in Ref. 1, that for the equations of the linear theory of elasticity in the neighbourhood of corner points the following
asymptotic representation exists

or a more complex representation with logarithmic components in the case of multiple points of the spectrum �k. Here r is the distance
to the corner point and fk are the angular distribution functions of the stress field � in the neighbourhood of the corner point, which, in
the plane case, depend on one polar angular variable �, c = 0, and in the three-dimensional case depend on two spherical coordinates �, �,
c = −1/2.

In two-dimensional problems, an investigation of the singularity of the stresses involves an analysis of the stress state at the vertex of
plane wedges. After almost half a century history of the solution of these problems, almost all possible versions of wedge-shaped bodies
have been considered: homogeneous, composite, isotropic, anisotropic, different boundary conditions, etc.

For three-dimensional problems we can distinguish two classes of objects: 1) the edge of a three-dimensional wedge (the edge is not
necessarily rectilinear, and the aperture angle of the wedge may vary along the edge), and 2) the vertex of a polyhedral wedge or the vertex
of a cone. Interest in problems of the first class have been exhausted by the results of a number of papers, including one of the first,2 in
which it was shown that the solution of the plane and antiplane problems for wedges, obtained in planes perpendicular to the edge of a
three-dimensional wedge, determines the form of the stress singularity at points of the edge through which the corresponding plane passes.

A number of papers devoted to an investigation of the stress singularity at the vertex of a polyhedral wedge or at the vertex of a
cone have appeared in recent years. Different versions of numerical methods have mainly been used to solve these problems, such as
the finite-elements method,3,4 the boundary-elements method,5,6 or by applying a Mellin transformation to the initial two-dimensional
boundary integral equations.7,8 One of the exceptions is Ref. 9, in which, using an analytical solution, the stress singularity at the vertex
of a homogeneous circular cone was investigated for homogeneous boundary conditions on the side surface. Considering the publications
devoted to an analysis of the stress singularity in three-dimensional bodies, the relatively small volume of numerical results obtained
(compared with the two-dimensional problems) is noteworthy.

A method was described in Ref. 10, which enables data to be obtained on the nature of the stress singularity at the vertex of a cone
with an elliptic base for homogeneous boundary conditions. As an extension of these investigations, we present below numerical methods
which enable one to obtain new results for different kinds of cones; in particular, we present new results for homogeneous and composite
circular and non-circular cones for homogeneous and mixed boundary conditions.
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1. Formulation of the problem

Consider a semi-infinite (circular or non-circular) cone, the vertex of which coincides with the centre of spherical coordinates (r, �, �)
while the base is perpendicular to the � = 0 axis. To analyse the nature of the stress singularity we will construct eigensolutions, which are
identical in form with the asymptotic representation of the solution,1

(1.1)

and which, in the region considered, satisfy the equilibrium equations

(1.2)

and homogeneous boundary conditions on the side surface of the cone, where either zero displacements

(1.3)

or zero stresses

(1.4)

may be specified. Here u is the displacement vector, n is the unit vector of the outward normal and v is Poisson’s ratio.
The version of the boundary conditions corresponding to the conditions of ideal slippage on the side surface may be of interest. These

conditions have the form

(1.5)

Mixed boundary conditions, when conditions (1.3) are specified when 0 ≤ � ≤�1 and conditions (1.4) when �1 ≤ � ≤2�, may be assigned
on the cone side surface.

In addition to a solid cone, a hollow cone, having two side surfaces, may be the subject of investigations. For a circular cone, the region
occupied by the body is defined as follows: 0 ≤ r ≤ ∞, 0 ≤ � ≤ 2�, �1 ≤ � ≤ �2 (�1 = 0 corresponds to a solid cone). In this case, it is possible
to specify one of the versions of boundary conditions (1.3)–(1.5) on the side surfaces.

To construct the eigensolutions, substituting expressions (1.1) into Eq. (1.2), we obtain a system of partial differential equations in the
functions �k(�, �) and the parameter �

(1.6)

Here

Boundary conditions (1.3) and (1.4), taking representation (1.1) into account, can be converted respectively to the form

(1.7)

(1.8)
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Here Lk and Mk are differential operators.
In addition to a homogeneous cone, one can also investigate a composite cone, for example, a circular cone occupying the region

V = V1 + V2, where the subregion V1 (subregion V2) is made of a material with a shear modulus G1 (G2) and Poisson’s ratio v1 (v2) and
its geometry is given by the relations 0 ≤ r ≤ ∞, 0 ≤ � ≤ 2�, �1 ≤ � ≤ �2 (�2 ≤ � ≤ �3). In special cases �1 and �3 can be equal to 0 and �
respectively.

When considering a composite cone, the eigensolutions (1.1) must satisfy equilibrium Eq. (1.2) in each of the subregions V1 and V2. The
equilibrium equations will differ solely in the values of the elastic constants of the material. Then, on the surfaces � = �1 (� /= 0) and � = �3
(� /= �) one of the versions of boundary conditions (1.3), (1.4) or (1.5) can be specified, while on the contact surface ideal layer bending
conditions may be specified, namely,

(1.9)

or ideal slippage conditions

(1.10)

Before the stage of obtaining Eqs. (1.6) with boundary conditions of the form (1.7) or (1.8), the scheme for investigating the stress
singularity is similar to the approach proposed previously for two-dimensional problems11 or for a circular cone.12 This is the furthest we
can go in the analogy when solving two-dimensional and three-dimensional problems, since the construction of an analytical solution of
Eq. (1.6) for many of the problems considered is problematic.

2. A method of calculating the indicators of stress singularity

We propose to solve the problem in question as follows. We will write Eq. (1.6) in a weak form,13 for which we multiply them by the
corresponding variations ��k (�, �) and integrate over the area S, cut off by the cone on a sphere. We obtain

(2.1)

We will use the finite element method to solve Eq. (2.1). The finite-element realization of these equations is fairly complex, since it
is necessary to use two-dimensional elements, which, together with the continuity of the functions �k, ensure continuity of their first
derivatives. Without going into a detailed analysis, we note that there are no effective procedures for constructing such elements in the
finite element method. In this connection, carrying out identity transformations in order to reduce the order of the derivative functions of
the solutions in Eq. (2.1) and taking boundary conditions (1.8) into account, we obtain the equation

(2.2)

where l is the boundary of the surface S on which the stresses are specified.
The reduction in the order of the derivatives enables us to use finite elements, which ensure only continuity of the functions �k. We

used triangular elements with Lagrange approximation of the linear polynomials of the functions �k as the finite elements.
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For a numerical analysis of circular conical bodies and for unmixed boundary conditions on the side conical surfaces we can represent
the functions �k(�, �) in the form of a Fourier series in the circumferential coordinate �

(2.3)

Taking expansion (2.3) into account, we can write Eqs. (2.1) and boundary conditions (1.7) and (1.8) for each of the harmonics of the
Fourier series in the following form (the prime denotes a derivative with respect to � and the superscript (n) on 	1, 	2 and 	3 is omitted)

(2.4)

(2.5)

The use of expansion (2.3) enables us, in the numerical realization, to transfer from the solution of a two-dimensional problem to a
set of individual one-dimensional problems for each of the harmonics of the Fourier series. In the one-dimensional forms of the finite
element method, unlike two-dimensional problems, there are approved finite elements, which enable one to ensure continuity of the
approximating functions and their first derivatives between neighbouring elements, and hence in this case a finite-element realization of
Eq. (2.4) is immediately possible. We used as finite elements one-dimensional binodal elements with approximations in the element of
the functions 	(n)

i
(�) by a cubic polynomial, defined by the values of the function and its derivatives d	(n)

i
/d� at the ends of the section (a

one-dimensional element).
As in the two-dimensional version, the procedure for reducing the orders of the derivatives in Eq. (2.4) can be employed. Then,

when using the finite element method to solve these equations, one-dimensional elements can be used, which ensure only conti-
nuity of the approximated functions, in particular, the one-dimensional binodal elements with linear approximation of the functions
	(n)

i
(�).

3. Numerical realization and confirmation of the method

The Bubnov procedure in combination with the finite element method reduces the problem to seeking eigenvalues and eigenvectors
of an algebraic asymmetric matrix having a strip structure. To solve the resultant algebraic problem of finding complex eigenvalues, we
employed an algorithm based on the use of Müller’s method and the argument principle, which enabled acceptable numerical results to
be obtained.

The reliability and effectiveness of the proposed method, and the algorithm for its numerical realisation can be confirmed by two versions
of numerical experiment. The first of these is related to the possibility of comparing numerical and analytical results9 for a homogeneous
solid circular cone (0 ≤ r ≤ ∞, 0 ≤ � ≤ 2�, 0 ≤ � ≤ �2). In a solid cone a stress singularity may occur for zero, first and second harmonics of
the Fourier series.

In Fig. 1 we show the results for the real parts of the eigenvalue �k < 1 for boundary conditions on the side surface (1.3) (a) and for
boundary conditions (1.4) (b) for v = 0.3. The results were obtained in the two-dimensional version of the numerical realization (Eq. (2.2))
and the one-dimensional version (Eq. (2.4)) for uniform discretization of the region considered by corresponding finite elements. The
difference between the numerical and analytical results in the two-dimensional version for a number of nodal variables ∼103 amounts to
less than one percent.

The other numerical experiment involved an analysis of the convergence of the numerical method from the degree of discretization
of the calculation region, as, for example, in Fig. 2, where we show the numerical solution (the continuous curve) as a function of the
number of nodal variables N and the analytical results (the dash-dot curve) for �2 = 2�/3 and v = 0.3. The results of similar experiments
demonstrate not only the convergence of the numerical procedure, but also enable us to choose the type of discretization of the calculation
region, which ensures acceptable accuracy.
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Fig. 1.

Fig. 2.

4. Results

We will present further the results of a solution of new problems. In Fig. 3 we show the real parts of the eigenvalue �k < 1 for a
solid circular cone (v = 0.3) with boundary conditions (1.5), corresponding to the conditions of ideal slippage. In Fig. 4 we show the
real parts of the eigenvalue for one of the versions of a solid circular cone (�2 = 2�/3 and v = 0.3) for mixed boundary conditions on
the side surface: zero displacements are specified for 0 ≤ � ≤ �1 and zero stresses are specified for �1 ≤ � ≤ 2�. It should be noted
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Fig. 3.

Fig. 4.

that, when solving this problem, one cannot represent the required solution in the form of a Fourier series in the angular coordinate
�. Here and henceforth the continuous curve corresponds to the real eigenvalue and the dashed curve corresponds to the complex
eigenvalue.

We carried out calculations for a composite cone, which enables the effect of the ratios of the mechanical characteristics on the indicator
of the stress singularity to be estimated. In Fig. 5 we show values of Re�k < 1 as a function of the ratio G1/G2 for a composite cone with
boundary conditions (1.9) and �1 = 0, �2 = �/3, �3 = 2�/3 and v1 = v2 = 0.3.

The method considered enables us to obtain numerical results for different cone shapes, including for a cone the base of which is an
ellipse. The geometry of the boundary S (2.2), cut out by a cone on a sphere, is given by the relation

(4.1)

Here a and b are the semi-axes of the ellipse and 2�2 is the aperture angle of the cone in the plane passing through the vertex of the
cone and the semi-axis a. In Fig. 6 we show the results of calculations of the real parts of the eigenvalues for zero stresses (a) and for zero
displacements (b) on the cone side surface.

The proposed method enables one to calculate all the eigenvalues of interest. Moreover, it enables one to calculate multiple eigenvalues
within the limits of the error of the numerical method. Thus, analytical results were presented in Ref.9 on the multiplicity of the eigenvalue
� = 1. In particular, the multiplicity is equal to 6 for �2 = �/2 and 9 for �2 = �. The method considered here enables us to obtain all the
multiple eigenvalues up to the third place for a number of finite elements of the order of three thousand.

Fig. 5.
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Fig. 6.
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